Fast Radio Bursts as Potential Cosmological ProbesSusumu Inoue (RIKEN)K. Ichiki, H. Shimabukuro

Cosmic Reionization H+He, evolution of faint AGN

Papers in prep.

Small-Scale Power Spectrum galaxy formation, warm dark matter

In an intergalactic burst I'm back to reveal the Universe...

cosmic dark ages -> cosmic dawn

observational constraints on cosmic HI reionization

quasar Lyα absorption troughs: CMB polarization anisotropy: neutral IGM at z~6

ionized IGM at $z \sim 17? \rightarrow 6-10$

HeII Lyα absorption troughs: end of He reionization at z~3

ionization energy: HeI – 24.6 eV near-simultaneous with H reionization (massive stars?) HeII – 54.4 eV quasars only!

dispersion measure for IGM with H+He assuming instantaneous reionization of HI at z=8.3, HeII at z=4

FRB 160102: DM=2596 pc cm⁻³ -> z=2.5 (not z=2.1!) assuming DM_{local}~100-200, $z\sim2.3-2.4$ approaching epoch of HeII reionization

cosmic reionization: quasars strike back?

quasar contribution to H+He reionization

Madau & Haardt 15, Khaire+ 16, Yoshiura+ 16, D'Aloisio+ 16...

Mitra, Choudhury & Ferrara 16 semi-analytic model with stars+QSOs strong constraints from HeII τ_{eff} inferred

quasar contribution to H+He reionization

IGM dispersion measure with reionization by stars+quasars Mitra+16 model difference with respect to best fit DM of mean IGM 7000 100 ~MH15 6000 QSO-dom 50 5000 ~G15 new QSQ 4000 delta DM DM 3000 ~HM12 old QSO 2000 -50 solid: Mitra16 without HeII 1000 ~P16 new CMB dotted: inst. $z_{HI}=8.3$, $z_{HeII}=4$

- model differences not large (δ DM~+-100 at z~2-6) but measurable unique info on H+He reionization, evolution of faint AGN

10

-100 ____2

3

- variance from LSS averaged out in sufficiently large sample

8

0

- local DM main uncertainty -> can it be sufficiently constrained?
- uncertainties in reionization history important for DM>~3000

FRB DM as probe of missing baryons -> abundance of small halos

sizable variance expected due to LSS-> probe distribution of ionized circumgalactic gas

lines of sight out to $z\sim1$ intersect sizable number of $\sim10^{10}$ M_{sun} halos -> σ (DM) sensitive to abundance and baryon distribution of such halos -> connection to small-scale issues in galaxy formation, e.g. WDM

cold dark matter (CDM): small-scale problems

- e.g. "missing satellites" compared to simple CDM predictions
- astrophysical feedback?
- modification to CDM: warm dark matter (WDM)?

WDM halo MF

dispersion measure: mean and variance with WDM

- further considerations necessary for variance in f_b , different profiles, etc - measureable differences expected for $m_{WDM} \sim <1 \text{ keV}$

-> perhaps weaker compared to other probes e.g. Ly α forest nevertheless valuable independent probe from structure of ionized IGM

summary

- crucial to include He for quantitative estimates of IGM DM
- FRB DMs: potentially unique, new probe of ionized intergalactic baryons
 - -> cosmic reionization of H+He by stars+quasars evolution of faint AGN
 - -> small scale power-spectrum (warm dark matter)
- need to distinguish δDM_{IGM}~100-200
 Q: can local DM be constrained to sufficient accuracy?

Everything I had to know, I heard it on the radio...