

Current and Future Work on Fast
Transient Search Algorithms

Scott Ransom
National Radio Astronomy Observatory / University of Virginia

Basic FRB Search Algorithm

● The following is done per beam
– RFI characterization / excision

– De-dispersion

– Matched Filter Search (usually boxcar)

– Candidate sifting

● Since there is no (or very little) integration,
algorithm can be pipelined and realtime

● De-dispersion is by far the most expensive step

Dispersion
Lower frequency radio waves are delayed with respect to higher
frequency radio waves by the ionized interstellar medium (ISM)

 t DM-2

(DM = Dispersion Measure)

Barsdell et al 2012

● Need ~104 frequency
channels

● DM for undiscovered
pulsar/FRB is unknown

● Must search over ~few
x 104 trial DMs!

● This multiplies data
rate by factor of few

● De-dispersion is very
I/O intensive

Incoming
pulsed signal

Integrated signal as
a function of DM trials

De-dispersion

De-dispersion State-of-the-Art
● All de-dispersion is limited by memory bandwith

– Arithmetic intensity per memory access is low

● Brute force dedisp ~O(Nchan
2)

– Often use GPUs:
● dedisp (in HEIMDALL), ARTEMIS, Maggro code…

– Very flexible (e.g. DM spacing, optimality)

● Tree Algorithms ~O(Nchanlog2Nchan)
– Known since early 1970s, but often ignored

– New variants fix lots of “problems”
● FDMT (Zackay et al. 2016), bonsai (Smith et al., in prep)

Incoherent dedispersion

time

frequency

Slide from Kendrick Smith

Incoherent dedispersion

time

The first step is to change variables
in order to transform the curves to straight lines.

Slide from Kendrick Smith

Tree dedispersion

time

The algorithm I’ll describe is a “tree” algorithm which ends up
approximating each straight-line track by a jagged sum of samples.

The sums are built up recursively.

Slide from Kendrick Smith

Tree dedispersion
First iteration: group channels in pairs. Within each pair, we
form all “vertical” sums (blue) and “diagonal” sums (red).

Output is two arrays, each half the size of the input array.

Slide from Kendrick Smith

Tree dedispersion
Second iteration: sum pairs into “pairs of pairs”.

Frequency channels have now been merged in quadruples.
Within each quadruple, there are four possible sums.

Slide from Kendrick Smith

Tree dedispersion
Last iteration: all channels summed.

Slide from Kendrick Smith

bonsai by Kendrick Smith

● Highly optimized, multi-core, CPU-based, tree code
(based on already good code by Jonathan Sievers)

● Mathematically proved that a “proper” tree-code could be
made arbitrarily close to optimum

– Increase Nchan, “smear” channels, upsampled (in time) tree

● Showed it could be generalized to search over spectral
indices, scattering index, intrinsic width

● “Blocked” formulation allow extreme cache friendliness,
better parallelism, and partial-band triggers

● Hand-optimized: vector intrinsics, linear speedup on
multicore, special techniques for memory BW

Extensive Monte-Carlo Testing
● Random pulse injections with various pulse

parameters (phase, width, scattering, spectral index)

Searching upsampled tree and 2 spectral indices
uses ~0.73 cores per beam (simulated CHIME data)

Dedispersion Summary

● Because of low arithmetic intensity, GPUs are
not the end-all-be-all solution for dedispersion
– Rise of multi-core CPUs and GPU “extra” power-

usage both contribute to this

● A better algorithm (i.e. “proper” tree-dedisp)
makes a huge difference

● bonsai will be released on github soon

Dealing with Many Beams at Once

● Each beam is independent
– Leads to pipelined processing per beam
– Requires zero communications between beams
– “pleasingly” parallel

● RFI is huge problem, and contributes to some or all beams
(i.e. inter-beam correlations)

● Inter-beam communication to deal with RFI can cause
significant loss of parallelism
– Need to ensure communication costs are low

– This is typically handled in the “sifting” stage

FRB Searching with Interferometers
● Generate sky pixels vs time by 1 of 2 ways:

– Beamforming: sum delayed antenna voltages via
hardware implementation or highly-vectorized DSP code

● De-disperse the pixel channels via tree-dedispersion

– Imaging: transform post-correlator visibilities into an
image via FFT

● De-disperse the visibilities via tree-dedispersion

● Casey Law’s rtpipe for realfast is a great example
● Potentially innovative ways to use autocorrelations

(or other correlator products) for RFI removal

Summary
● For single beams, de-dispersion is most costly step
● For interferometers, can be dedisp or imaging
● Use NlogN algorithms whenever possible!

– Tree-dispersion has seen many improvements

● GPUs are no longer the “obvious” answer
– Need to carefully check power requirements

– Weigh pros/cons of CPU speed vs. flexibility and GPU speed vs.
programming difficulties and power/cost

● Auto-tune your algorithm to your hardware! (e.g. very cool
work by Alessio Sclocco et al. 2016).

● While not trivial, FRB searching is still much simpler than
searching for binary millisecond pulsars….

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

