Probing the Origin of Fast Radio Bursts by Simulations of Binary Neutron Star Merger

Shotaro Yamasaki¹

Collaborators: Tomonori Totani¹, Kenta Kiuchi² & Masaru Shibata²

6

THEORETICAL PHYSICS

- 1. Department of Astronomy, University of Tokyo
- 2. Yukawa Institute for Theoretical Physics, Kyoto University

@ @ @ @ @

- 1. Binary Neutron Star Merger Models
- 2. Motivation
- 3. Simulation Data
- 4. Result & Discussion
- 5. Summary

1. Binary Neutron Star Merger Models

- 2. Motivation
- 3. Simulation Data
- 4. Result & Discussion
- 5. Summary

NS-NS merger model for FRBs

- Possible origin of non-repeating FRBs (Totani '13, Wang+ '16, Zhang '16)
- Pulsar-like emission at the time of merger (Totani '13) / Curvature radiation during in-spiral phase via unipolar inductor mechanism (Wang +'16)
- Dynamical timescale of merger may explain FRB duration (~ms)
- Energetics : OK

Image Credit : NASA

Associations with Gravitational Waves Short GRBs Kilonova/ Macronova

1. Binary Neutron Star Merger Models

2. Motivation

- 3. Simulation Data
- 4. Result & Discussion
- 5. Summary

Motivation

- Theoretical studies predict possible electromagnetic emissions during inspiral phase (e.g. Hansen & Lyutikov '00, Lai '12, Totani '13, Wang+'16).
- However, the region surrounding the site of the merger may be polluted by mass ejected dynamically during the in-spiral phase.
 - \rightarrow Suppression of radio emission ?
- How much is the time lag between the enhancement of the dipole rotation and the expansion of ejecta ?
- We focus on the expansion of dynamical ejecta from simulation results and test the consistency of the NS-NS merger model for FRBs.

Binary Neutron Star Merger Models Motivation

3. Simulation Data

- 4. Result & Discussion
- 5. Summary

Simulation Setups

- High resolution 3D numerical-relativity simulations (Kiuchi +'14)
- We employ H4 equation of state with which total BNS mass is 2.7 M_{SUN} (equal mass system) without B field
- The computation follows about an in-spiral orbit, and the merger outcome is a HMNS with its lifetime > 40 ms

- 1. Binary Neutron Star Merger Models
- 2. Motivation
- 3. Simulation Data
- 4. Result & Discussion
- 5. Summary

Snapshots of the density profile

Spin rate evolution : $\Omega_{\text{star}}(t)$

Rapid increase of Ω_{star} at $-1 \text{ ms} \leq t - t_{\text{merge}} \leq 0 \text{ ms}$

Rapid increase of Ω_{star} at $-1 \text{ ms} \leq t - t_{\text{merge}} \leq 0 \text{ ms}$

Column density of ejected matter

Column density of ejected matter

Ζ

 $r = r_{emi}$ (assumed emission radius)

orbital plane

Column density of ejected matter

We calculate the φ -averaged column density (at $r > r_{emi}$) for several polar angles (θ)

Column density evolution ($r_{emi} = 30 \text{km}$)

Column density evolution ($r_{emi} = 50 \text{km}$)

Light Cylinder radius of MSP : $R_L \sim 50 \text{km} (P/1\text{ms})^{-1}$

Column density evolution ($r_{emi} = 50 \text{km}$)

- 1. Binary Neutron Star Merger Models
- 2. Motivation
- 3. Simulation Data
- 4. Result & Discussion
- 5. Summary

Summary

- Optically thick dynamical ejecta (or "tidal tail") starts to expand after each NS starts to rotate rapidly (P~1ms)
- Expansion is slower in the polar direction than in orbital plane
 - \rightarrow Polar cap region right before merger is favored site for FRBs
- Given the radio emissions at about the light cylinder radius of msec pulsar (~ 50 km), they could be observable in all directions during ~ 1 ms after the spin rate becomes sufficiently large.
- The duration of an FRB could be explained by the dynamical timescale of expanding ejecta :

$$\delta t \lesssim \frac{r_{\rm emi}}{V_{\rm ej}} \Rightarrow \delta t \lesssim 1.5 \,\mathrm{ms} \left(\frac{r_{\rm emi}}{50 \mathrm{km}}\right) \left(\frac{V_{\rm ej}}{0.1 \,\mathrm{c}}\right)$$