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1. Binary Neutron Star Merger Models



NS-NS merger model for FRBs

- Possible origin of non-repeating FRBs
(Totan1 ’13, Wang+ ’16, Zhang ’16)

» Pulsar-like emission at the time of
merger (Totani ’13) / Curvature
radiation during in-spiral phase via
unipolar inductor mechanism
(Wang +’16)

- Dynamical timescale of merger may
explain FRB duration (~ms)

Image Credit : NASA

Associations with

» Energetics : OK Gravitational Waves
Short GRBs
Kilonova/ Macronova
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2. Motivation



Motivation

- Theoretical studies predict possible electromagnetic emissions during in-
spiral phase (e.g. Hansen & Lyutikov 00, La1 *12, Totan1 13, Wang+’16).

- However, the region surrounding the site of the merger may be polluted
by mass ejected dynamically during the in-spiral phase.
— Suppression of radio emission ?

* How much is the time lag between the enhancement of the dipole
rotation and the expansion of ejecta ?

- We focus on the expansion of dynamical ejecta from simulation results
and test the consistency of the NS-NS merger model for FRBs.
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3. Simulation Data



Simulation Setups
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 High resolution 3D numerical-relativity simulations (Kiuchi +°14)

+ We employ H4 equation of state with which total BNS mass i1s 2.7 Msun
(equal mass system) without B field

- The computation follows about an in-spiral orbit, and the merger outcome 1s a
HMNS with 1ts lifetime > 40 ms
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4. Result & Discussion



Snapshots of the density profile
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Spin rate evolution : Qsear (7)
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Column density of e¢jected matter

T ' — orbital plane

r=20
(merging center)



Column density of e¢jected matter

V' = Femi
(assumed emission radius)

T = — orbital plane

r=20
(merging center)



Column density of e¢jected matter

We calculate the ¢p-averaged column density (at 7 > 7emi)
for several polar angles (6)

6=0" 0=30"

0=060"

T———> 0 =90 " (orbital plane)

V' = Vemi
(assumed emission radius)
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Column density evolution ( 7emi = 30km )
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Column density evolution ( 7emi = S0km )

Light Cylinder radius of MSP : Ry ~ 50km (P/1ms)!
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Column density evolution ( 7emi = S0km )

An FRB could be produced here !
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5. Summary



Summary

* Optically thick dynamical ejecta (or “tidal tail”) starts to expand after each
NS starts to rotate rapidly (P ~1ms)

* Expansion 1s slower in the polar direction than in orbital plane

— Polar cap region right before merger is favored site for FRBs

* Given the radio emissions at about the light cylinder radius of msec
pulsar (~ 50 km), they could be observable in all directions during ~ 1
ms after the spin rate becomes sufficiently large.

* The duration of an FRB could be explained by the dynamical timescale of
expanding ejecta :
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