# Pre-/post-dictions for Counterparts of FRBs

#### **Bing Zhang**

University of Nevada Las Vegas

#### Feb. 15, 2017

Aspen Center for Physics Program: Fast Radio Bursts: New Probes of Fundamental Physics and Cosmology Feb. 12 - 17, 2017, Aspen, Colorado

## FRBs vs. GRBs

- Physical connection??
- Social/cultural connection between the two fields







Fig. 1. The frequency-integrated flux densities for the four FRBs. The time resolutions match the level of dispersive supering in the central frequency channel (0.8, 0.6, 0.9, and 0.5 millissecula, respectively).



## FRBs vs. GRBs

|                                      | GRBs                                                          | FRBs                                              |  |  |
|--------------------------------------|---------------------------------------------------------------|---------------------------------------------------|--|--|
| Step one: Are they astrophysical?    | 1967 – 1973                                                   | 2007 – 2015                                       |  |  |
| Step two: Where are they (distance)? | 1973 – 1997 – 2004<br>(Afterglow counterpart,<br>host galaxy) | 2016<br>(Persistent radio<br>source, host galaxy) |  |  |
| Step three: What make them?          | 1998 – ???<br>(SN Ic, GW?)                                    | ???<br>(AGN? GRB?<br>magnetar-powered<br>nebula?) |  |  |

Observationally driven Healthy dialog between observers and theorists

## What may make them?

(An incomplete list, no particular order)

#### **Repeating:**

- Supergiant radio pulses (Cordes & Wasserman 2015; Connor et al. 2015; Pen & Connor 2015)
- Magnetar giant flare radio bursts (Popov et al. 2007, 2013; Kulkarni et al. 2014; Katz 2015)
- NS-Asteroid collisions (Geng & Huang 2015; Dai et al. 2016)
- WD accretion (Gu et al. 2016)
- Flaring stars (Loeb et al. 2013; Maoz et al. 2015)
- AGN induced plasma instability (Romero et al. 2016)
- Young magnetar powered bursts (Murase et al. 2016; Metzger et al. 2017)
- Cosmic combs (Zhang 2017)
- Instability within pulsar magnetosphere (Philippov's talk)

#### Catastrophic:

- Collapses of supra-massive neutron stars to black holes (thousands to million years later after birth, or in a small fraction hundreds/thousands of seconds after birth), ejecting "magnetic hair" (Falcke & Rezzolla 2013; Zhang 2014)
- Magnetospheric activity after NS-NS mergers (Totani 2013)
- Unipolar inductor in NS-NS mergers (Piro 2012; Wang et al. 2016)
- Mergers of binary white dwarfs (Kashiyama et al. 2013)
- BH-BH mergers (charged) (Zhang 2016; Liebling & Palenzuela 2016)
- Kerr-Newman BH instability (Liu et al. 2016)
- Cosmic sparks from superconducting strings (Vachaspati 2008; Yu et al. 2014)
- Evaporation of primordial black holes (Rees 1977; Keane et al. 2012)
- White holes (Barrau et al. 2014; Haggard)
- Axion miniclusters, axion stars (Tkachev 2015; Iwazaki 2015)
- Quark Nova (Shand et al. 2015)

. . . . . .

- Dark matter-induced collapse of NSs (Fuller & Ott 2015)
- Higgs portals to pulsar collapse (Bramante & Elahi 2015)

## Lessons from GRBs

Table 1

- Discovered in late 1960s
- More than 100 models
- "The only feature that all but one (and perhaps all) of the very many proposed models have in common is that they will not be the explanation of gamma-ray bursts"
  - Malvin Ruderman (1975)
- The same may be stated for FRB models

| Author                        | Year<br>Pub | Reference                           | Main<br>Body | 2nd<br>Body | Place        | Description                                                                                                        |
|-------------------------------|-------------|-------------------------------------|--------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------|
| Colgate                       | 1968        | CJPhys, 46, 5476                    | ST           |             | 005          | SN shocks stellar surface in distant galaxy                                                                        |
| Colgate                       | 1974        | ApJ, 187, 305                       | NT.          |             | 005          | Type II 2N shock been, inv Comp scat at stellar surface                                                            |
| Stocker et al.                | 1973        | Nature, 245, P\$70                  | 57           |             | DISK         | Stellar superflare from nearby star                                                                                |
| Stecher et al.                | 1973        | Nature, 245, P870                   | WD           |             | DISK         | Superflare from nearby WD                                                                                          |
| Barwit et al.                 | 1973        | ApJ, 186, L37                       | 5.5          | COM         | DISK         | Relic comet perturbed to collide with old galactic NS                                                              |
| Lamb et al.                   | 1973        | Nature, 246, PS52                   | WD           | ST          | DISK         | Accretion onto WD from flare in companion                                                                          |
| Loub et al.                   | 1973        | Nature, 246, PS52                   | 203          | 87          | DOSK         | Accretion onto NS from flare in companion                                                                          |
| Loreb et al.                  | 1973        | Nature, 246, P852                   | 814          | ST          | DOSK         | Accretion onto BH from flare in companion                                                                          |
| Zwicky                        | 1974        | Ap & 85, 28, 111                    | 53           |             | HALO         | NS chunk contained by external preseure escapes, explodes                                                          |
| Grindlay et al.               | 1974        | ApJ, 187, L93                       | DG           |             | \$06         | Relativistic iron dust grain up-scatters solar radiation                                                           |
| Brocher et al.                | 1974        | ApJ, 187, L97                       | 81           |             | DISK         | Directed stellar flare on nearby star                                                                              |
| Behlovskii                    | 1974        | SovAstron, 18, 390                  | WD           | COM         | DOSK         | Comet from system's cloud strikes WD                                                                               |
| Schlovskii                    | 1974        | SovAstron, 18, 390                  | NS           | COM         | DOSK         | Comet from system's cloud strikes NS                                                                               |
| Bianovatyi- et al.            | 1978        | Ap & 85, 35, 23                     | BT           |             | 008          | Absorption of neutrino emission from 5N in stellar envelope                                                        |
| Bianovatyl- et al.            | 1975        | Ap & 88, 35, 23                     | 81           | 830         | 008          | Thermal emission when small star heated by SN shock wave                                                           |
| Bisnovatyl- et al.            | 1975        | Ap & S5, 35, 23                     | 55           |             | COS          | Ejected matter from NS explodes                                                                                    |
| Pacini et al.                 | 1974        | Nature, 251, 309                    | NS           |             | DISK         | NS crustal starquake glitch; should time coincide with GRB                                                         |
| Narlikar et al.               | 1974        | Nature, 251, 590                    | WH           |             | 008          | White hole emits spectrum that softens with time                                                                   |
| Taygan                        | 1975        | A&A, 44, 21                         | NS<br>WD     |             | HALO<br>DISK | NS correguake excites vibrations, changing E & B fields                                                            |
| Chanmagam<br>Prilutski et al. | 1978        | ApJ, 193, L75<br>Ap & SS, 34, 305   | AGN          | ST          | COS          | Convection inside WD with high B field produces flare<br>Collapse of supermassive body in sucleus of active galaxy |
| Narlikar et al.               | 1975        |                                     | Will         |             | 008          | Will earlies synchrotron emission, inverse Compton scattering                                                      |
| Piran et al.                  | 1975        | Ap & 88, 35, 321                    | 811          |             | DON          | In Comp stat deep in ergosphere of fast rotating, accreting BH                                                     |
| Fabian et al.                 | 1976        | Nature, 256, 112<br>Ap & 55, 42, 77 | NS           |             | DISK         | NS crustquake shocks NS surface                                                                                    |
| Chanmagam                     | 1976        | Ap & 55, 42, 83                     | WD           |             | DISK         | Magnetic WD suffers MHD instabilities, faces                                                                       |
| Mullan                        | 1976        | ApJ, 208, 199                       | WD           |             | DON          | Thermal radiation from flare near magnetic WD                                                                      |
| Woosley et al.                | 1976        | Nature, 263, 108                    | NS           |             | DISK         | Carbon detonation from accested matter onto NS                                                                     |
| Lamb et al.                   | LINTT       | ApJ, 217, 197                       | 35           |             | DOW          | Mag grating of accret disk around N5 causes sudden accretion                                                       |
| Firan et al.                  | 1977        | ApJ, 214, 268                       | 801          |             | DORK         | Instability in accretion onto rapidly rotating BH                                                                  |
| Dangupta                      | 1979        | Ap & 88, 63, 517                    | DG           |             | SOL.         | Charged intergal rel dust grain enters sel sys, breaks up                                                          |
| Taygan                        | 1980        | A&A, 87, 224                        | WD           |             | DON          | WD surface nuclear burst causes chromospheric flaves                                                               |
| Trougan                       | 1980        | A&A, 87, 224                        | NS           |             | DOSK         | NS surface nuclear burst causes chromospheric flares                                                               |
| Ramaty et al.                 | 1001        | Ap & 85, 75, 193                    | 768          |             | DOW          | NS vibrations heat atm to pair produce, annihilate, synch cool                                                     |
| Newman et al.                 | 1940        | ApJ, 242, 319                       | 70.8         | AST         | DUSK         | Astoroid from interstellar medium hits NS                                                                          |
| Rematy et al.                 | 1980        | Nature, 287, 122                    | 20.5         |             | HALO         | NS core quake caused by phase transition, vibrations                                                               |
| Reward et al.                 | 1981        | Ap.J, 249, 302                      | N8           | AST         | DISK         | Asteroid hits NS, B-field confines mass, creates high temp                                                         |
| Mitsufance et al.             | 1991        | Ap & 88, 77, 469                    | 20.8         |             | DON          | Helium flash cooled by MHD waves in NS outer layers                                                                |
| Colgate et al.                | 1991        | Ap.J. 248, 771                      | 50           | ATT         | DISN         | Asteroid hits NS, tidally disrupts, heated, expelled along B lines                                                 |
| van Buren                     | 1941        | Ap.J, 249, 297                      | NS           | AST         | DOM          | Asteroid eaters NS II field, dragged to earlace collision                                                          |
| Kumetoow                      | 1982        | CosRes, 20, 72                      | MG           |             | 806          | Magnetic reconnection at heliopause                                                                                |
| Kana                          | 1962        | ApJ, 260, 371                       | 25.8         |             | DORK         | NS farm from pair plasma confined in NS magnetosphere                                                              |
| Woosley et al.                | 1982        | ApJ, 258, 716                       | 5.5          |             | DISK         | Magnetic reconnection after NS surface He flash                                                                    |
| Figurell et al.               | 1982        | ApJ, 258, 753                       | NB           |             | DON          | He fusion runaway on NS B-pole helium lake                                                                         |
| Ramoury et al.                | 1982        | A&A, 111, 242                       | 3/8          |             | DOSK         | e- capture triggers H flash triggers He flash on NS surface                                                        |
| Mitpofanov et al.             | 1982        | MNRA5, 200, 1003                    | 55           |             | DISK         | B induced cyclo res in rad absorp giving rel e-s, inv C scat                                                       |
| Fealmore et al.               | 1982        | Nature, 297, 665                    | NS           |             | DISK         | BB X-rays inv Comp soat by hotter overlying plasma                                                                 |
| Lipunov et al.                | 982         | Ap & 88, 85, 459                    | 5.5          | 15M         | DISK         | 1554 matter accum at NS magnetopause then suddenly accretes                                                        |
| Baan                          | 1982        | ApJ, 261, L71                       | WED          |             | HALO         | Nonexplosive collapse of WD into soluting, cooling NS                                                              |
| Ventura et al.                | 1983        | Nature, 301, 491                    | 24.8         | ST          | DISK         | NS accretion from low mass binary companion                                                                        |
| Bisnovatyi- et al.            | 1983        | Ap & 55, 89, 447                    | 5.5          |             | DISK         | Neutron sich elements to NS surface with quake, undergo fission                                                    |
| Bianovatyl- et al.            | 1984        | SovAstron, 28, 62                   | N8           |             | DORK         | Thermonuclear explosion beneath NS surface                                                                         |
| Ellison et al.                | 1983        | A&A, 128, 102                       | 3/3          |             | HALO         | NS corequake + uneven heating yield SGR pubsitions                                                                 |
| Ramoury et al.                | 1983        | A&A, 128, 309                       | 5.5          |             | DOM:         | B field contains matter on NS cap allowing fusion                                                                  |
| Bonagrola et al.              | 1984        | A&A, 136, 89                        | 35           |             | DISK         | NS surface nuc explosion causes small scale B reconnection                                                         |
|                               |             |                                     |              |             |              |                                                                                                                    |

Nemiroff, 1994, Comments on Astrophysics, 17, 189

128 models

## Multiple progenitor systems?



Known observationally-defined transients have multiple progenitors (SNe & GRBs)

Following discussion not limited to repeating models

## Plan

- Model-independent (parameter-dependent) predictions
  - Afterglow
  - Prompt emission in other wavelengths
- Model-specific predictions
  - Models without bright counterparts
  - Models with bright counterparts: SGR giant flare, GRB, SN, AGN, GW?
- Data
  - FRB 150418
  - FRB 131104
  - The repeater FRB 121102
- Latest ideas
  - Young magnetar?
  - Cosmic combs?

Model-independent (parameter-dependent) Predictions

# Afterglow

- Any "explosion" would leave behind an afterglow through interaction between the ejecta and ambient medium
- Relativistic ejecta have brighter afterglows. Both FRBs and GRBs are relativistic
- However, isotropic emission energy differs by 12-13 orders of magnitudes!



**GRB** afterglow

 $F_{\nu,max} = (7.7 \text{ mJy}) (p + 0.12)(1 + z)^{3/2} \epsilon_{B,-2}^{1/2} E_{52} A_* D_{L,28}^{-2} t_d^{-1/2}$ 

 $\nu_m = (4.0 \times 10^{14} \text{ Hz}) (p - 0.69)(1 + z)^{1/2} \epsilon_{B,-2}^{1/2} [\epsilon_e g(p)]^2 E_{52}^{1/2} t_d^{-3/2}$ 

Detectable only if FRBs have very low efficiency in radio, so that a much larger energy kinetic energy is released to drive a bright afterglow

# **FRB** Afterglows

(Yi, Gao & Zhang 2014, ApJL, 792, L21)



# **FRB** Afterglows

- Very faint!
- Observational strategy:
  - Rapid follow-up may not help much.
  - Wide field telescopes (Xrays and optical) may help
  - Best shot: deep follow-up observations in radio.
    However, much fainter than the steady nebula observed from the repeater.



## Prompt emission in optical?

(guess rather than prediction)

- No reliable prediction on optical emission (radio emission is coherent)
- Keep searching
- There might be a lot of fast optical bursts may or may not related to FRBs.



GRB prompt optical emission

#### **Model-specific Predictions**

Models likely without a bright counterpart

- Pulsar nano-shots
- Pulsar magnetospheric instabilities
- Blitzars with a long delay (e.g. thousands of years after formation of supramassive NS)

## Models likely with a counterpart

- FRB SGR giant flare connection?
- FRB GRB connection?
- FRB SN connection?
- FRB GW connection?

## FRB - Magnetar giant flare connection?

Popov et al.; Kulkarni et al. Katz; ...

- Short-hard spike detectable as short GRBs out to ~ 70 Mpc (non-detectable at z=0.193 unless flares are more energetic)
- No dispersed radio emission for SGR 1806-20



Tendulkar et al. (2016)

## FRB - GRB connection?

Zhang (2014); Murase et al. (2016); Dai et al. (2016)

- Blitzar in GRB
  - Supra-massive NSs as GRB engine
  - Collapse 100-10000 s after the burst
  - ~ 30% short GRBs have magnetar collapsing signature ~ 300 s after the bursts
- NS NS mergers
  - Pre-merger unipolar induction (Piro 2012; Wang et al. 2016)
  - Charged compact star mergers (Zhang 2016)



#### Early search



Bannister, Murphy, Gaensler & Reynolds, 2012, ApJ, 757, 38

## Search for an FRB in a right GRB at a right time

- Non detections in several more GRBs
- Non-detection is norm. To detect an FRB following a GRB, one needs to have
  - Right GRB (not a BH nor a stable magnetar)
  - At the right time (not before or after collapse)
  - With a bright enough flux (~Jy at z~0.5-1?)
- Rapid slew, continuous monitoring highly desired
- Especially 300 s after short GRBs!



Palaniswamy et al., 2014, ApJ, 790, 63

#### FRB - GRB rates





## FRB - SN connection?

Kashiyama et al. (2013)

- WD WD merger making a Type Ia SN ruled out in large parameter space
- Importance of real-time follow-up



## FRB - GW connection?

Totani; Zhang; Piro; Wang et al.; Liebling et al.; Liu et al.

- Post-merger synchronization of the magnetosphere (NS-NS mergers only)
- Unipolar induction (NS-NS and possibly NS-BH mergers
- Pre-merger magnetospheric activities of mergers with at least one charged member (NS-NS, NS-BH, BH-BH mergers)

## Charged BH merger model

(Zhang, ApJ, 827, L31)



 $\nabla \cdot E = 4\pi\rho$  $\nabla \cdot B = 0$  $\nabla \times E = -\frac{1}{c}\frac{\partial B}{\partial t}$  $\nabla \times B = \frac{4\pi}{c}J + \frac{1}{c}\frac{\partial E}{\partial t}$ 

**Maxwell Equations** 

High school AP Physics E&M

## Charged BH merger model

(Zhang, ApJ, 827, L31)

GRB

FRB



Can produce Fast radio bursts (FRBs) and short GRBs

$$\hat{q} \sim (10^{-9} \text{--} 10^{-8}) \qquad \qquad \hat{q} \sim (10^{-5} \text{--} 10^{-4})$$

See also GR simulations by Liebling & Palenzuela (2016)

## Merger & FRB rate

• BH-BH merger event rate density (Abbott et al. 2016)

$$(9-240) \text{ Gpc}^{-3} \text{ yr}^{-1}$$

• FRB event rate density

$$\dot{\rho}_{\rm FRB} = \frac{365 \dot{N}_{\rm FRB}}{(4\pi/3) D_z^3} \simeq (5.7 \times 10^3 \text{ Gpc}^{-3} \text{ yr}^{-1}) \\ \times \left(\frac{D_z}{3.4 \text{ Gpc}}\right)^{-3} \left(\frac{\dot{N}_{\rm FRB}}{2500}\right),$$

• Adding NS-NS, NS-BH mergers, may account for a good fraction of FRBs

#### What do data tell us?

#### Any counterpart discovered?

# FRB 150418

#### (Keane et al. 2016, Nature)



# Flaring AGN - connection to FRB?

- Re-brightened to the original level (Williams & Berger 2016; Vedanthem et al. 2016; Johnston et al. 2016)
- AGN flare or scintillation?
- An unrelated background source or is there a connection between the AGN and the FRB?
- Low probability of having the bright flare coincides with FRB both in space and in time (Li & Zhang 2016)



## FRB 131104 - Swift J06

(DeLaunay et al. 2016, ApJL; Murase et al.





A faint GRB association?  $4.2\sigma$ 

#### FRB 131104 - Swift J0644.5-5111 No radio afterglow

(Shannon & Ravi; Murase et al.; Gao & Zhang; Dai et al.)





-0.5

-1.5

-2.5

-3

-3.5

ε\_=0.1

0.2

0.1

Gao & Zhang 2017

Shannon & Ravi 2016

## Does it make sense?



- Not exactly.
- Model predictions:
  - Either FRB after the GRB (blitzar scenario)
  - or FRB before the GRB (merger scenario)
- Data:
  - GRB started at least 7 s
    before the FRB

## The repeater FRB 121102

Chatterjee et al.; Marcote et al.; Tendulkar et al.

- Located in a star forming galaxy
- Associated with a steady radio source
- What is the relationship between the radio source and FRBs?





#### Latest ideas

# Magnetar-powered FRBs in a nebula

Yang et al. (2016); Murase et al. (2016); Metzger et al. (2017)

- A magnetar powers both the nebula and FRBs?
- Preceded by a long GRB or super-luminous SN? - A connection with GRB and SN?
- Synchrotron heating of the nebula by FRBs?
- Issue: No evolution of DM for the repeater



Yang et al. 2016, ApJL, 819, L12

## Cosmic combs

#### Zhang (2017, ApJL, arXiv:1701.04094)

- Condition: ram pressure > magnetic pressure
- Source of comb: AGN, GRB, SN, TDE, companion ...
- A unified model
  - FRB 150418: combed by an AGN
  - FRB 131104: combed by a GRB
  - Repeater: "marginally" combed by an unsteady nebula wind





## Cosmic combs

#### Zhang (2017, ApJL, arXiv:1701.04094)

- Advantages:
  - Additional energy source other than spindown and magnetic energy: kinetic energy of the stream
  - Can repeat or not
  - Insignificant DM evolution
- Predictions
  - FRB 150418: may (or may not) repeat during another AGN flare
  - Association of FRBs with AGNs, GRBs, SNe, TDEs ... anything produces a stream
  - Or no association at all (a companion comb)
    small △DM



# Conclusions

- FRB counterparts would reveal their progenitor(s)
- Model-independent and model-specific predictions (none realized)
- Some counterparts (or counterpart candidates) detected. Observations are perplexing and inconsistent
- Continue multi-wavelength, multi-messenger observations!
- Don't over-estimate the creativity of Nature, but don't under-estimate it, either!