Pre-/post-dictions for Counterparts of FRBs

Bing Zhang

University of Nevada Las Vegas

Feb. 15, 2017

Aspen Center for Physics Program: Fast Radio Bursts: New Probes of Fundamental Physics and Cosmology Feb. 12 - 17, 2017, Aspen, Colorado

FRBs vs. GRBs

- Physical connection??
- Social/cultural connection between the two fields

Fig. 1. The frequency-integrated flux densities for the four FRBs. The time resolutions match the level of dispersive supering in the central frequency channel (0.8, 0.6, 0.9, and 0.5 millissecula, respectively).

FRBs vs. GRBs

	GRBs	FRBs
Step one: Are they astrophysical?	1967 – 1973	2007 – 2015
Step two: Where are they (distance)?	1973 – 1997 – 2004 (Afterglow counterpart, host galaxy)	2016 (Persistent radio source, host galaxy)
Step three: What make them?	1998 – ??? (SN Ic, GW?)	??? (AGN? GRB? magnetar-powered nebula?)

Observationally driven Healthy dialog between observers and theorists

What may make them?

(An incomplete list, no particular order)

Repeating:

- Supergiant radio pulses (Cordes & Wasserman 2015; Connor et al. 2015; Pen & Connor 2015)
- Magnetar giant flare radio bursts (Popov et al. 2007, 2013; Kulkarni et al. 2014; Katz 2015)
- NS-Asteroid collisions (Geng & Huang 2015; Dai et al. 2016)
- WD accretion (Gu et al. 2016)
- Flaring stars (Loeb et al. 2013; Maoz et al. 2015)
- AGN induced plasma instability (Romero et al. 2016)
- Young magnetar powered bursts (Murase et al. 2016; Metzger et al. 2017)
- Cosmic combs (Zhang 2017)
- Instability within pulsar magnetosphere (Philippov's talk)

Catastrophic:

- Collapses of supra-massive neutron stars to black holes (thousands to million years later after birth, or in a small fraction hundreds/thousands of seconds after birth), ejecting "magnetic hair" (Falcke & Rezzolla 2013; Zhang 2014)
- Magnetospheric activity after NS-NS mergers (Totani 2013)
- Unipolar inductor in NS-NS mergers (Piro 2012; Wang et al. 2016)
- Mergers of binary white dwarfs (Kashiyama et al. 2013)
- BH-BH mergers (charged) (Zhang 2016; Liebling & Palenzuela 2016)
- Kerr-Newman BH instability (Liu et al. 2016)
- Cosmic sparks from superconducting strings (Vachaspati 2008; Yu et al. 2014)
- Evaporation of primordial black holes (Rees 1977; Keane et al. 2012)
- White holes (Barrau et al. 2014; Haggard)
- Axion miniclusters, axion stars (Tkachev 2015; Iwazaki 2015)
- Quark Nova (Shand et al. 2015)

.

- Dark matter-induced collapse of NSs (Fuller & Ott 2015)
- Higgs portals to pulsar collapse (Bramante & Elahi 2015)

Lessons from GRBs

Table 1

- Discovered in late 1960s
- More than 100 models
- "The only feature that all but one (and perhaps all) of the very many proposed models have in common is that they will not be the explanation of gamma-ray bursts"
 - Malvin Ruderman (1975)
- The same may be stated for FRB models

#	Author	Pub	Reference	Main Body	2nd Body	Place	Description
	Colonia	1000	CIPNER M. SITE	-		005	SN shocks station earlies in distant solvery
	Colente	1974	And 187 AVA			005	Type II 8N shock hear, inv flores and at stallar surface
	Sharker at al.	1973	Nature, 241, 19270	87		DISK	Dellar moreflare from nearby star
	Shecker et al.	1973	Nature, 245, P\$70	WCD.		DOWN	Severilare from searche WD
	Barnin et al.	1975	Aul. 186 1.97	10.0	0004	DOM:N	Balic count perturbed to collide with old substic NS
	Looph et al.	1975	Nature 946 PERS	WD.	-	DUSK	Acception onto Will from flam in companion
	Lamb et al.	1973	Nature, 244, P552	NIL	ST.	DOIN	Acception onto NE from flate in companion
	Looph et al.	1973	Nature, 244, P552	10.14	ST.	DOM	Acception onto Hill from flare in companyion
	Zwicky	1974	Apr & 25, 28, 111	315		ILAL O	NS chunk contained by external pressure excapes, explodes
	Grindlay et al.	1974	ApJ, 187, L93	DG		\$04	Relativistic iron dust grain up-scatters solar radiation
	Brocher et al.	1974	ApJ, 187, 1.97	8T		DOSK	Directed stellar flars on nearby star
	Bahlovskii	1974	SovAstron, 18, 390	WD	COM	DOIN	Comet from system's cloud strikes WD
	Schlovskii	1974	Sov.Astron. 14, 390	NS.	COM	DON	Comet from system's cloud strikes NS
	Bianovatyi- et al.	1975	Ap & 88, 35, 23	ST.		COS	Absorption of neutrino emission from SN in stellar envelope
	Bianovatyle et al.	1975	Ap & 88, 35, 23	ST	838	COS	Thermal emission when small star heated by SN shock wave
	Bisnovatyi- et al.	1975	Ap & S5, 35, 23	35		COS	Ejected matter from NS explodes
	Pacini et al.	1974	Nature, 951, 899	NS		DISK	NS crustal starquake glitch; should time coincide with GRB
	Narlikar et al.	1974	Nature, 251, 590	WH		008	White hole emits spectrum that softens with time
	Taygan	1975	A&A, 44, 21	768		HALO	NS correquake excites vibrations, changing E & B fields
	Chanmagam	1974	ApJ, 190, L75	WD		DISK	Convection inside WD with high B field produces flare
	Prilutski et al.	1978	Ap & 88, 34, 305	AGN	ST	008	Collapse of supermassive body in sucleus of active galaxy
	Narlikar et al.	1975	Ap & 88, 35, 321	W38		-008	Will easites synchrotron emission, inverse Compton scattering
	Piran et al.	1975	Nature, 256, 112	801		DOSK	Inv Comp stat deep in ergosphere of fast rotating, accreting BB
	Fabian et al.	1976	Ap & 55, 42, 17	N.S.		DISK	NS crustquake shocks NS surface
	Chanmagam	1976	Ap & 55, 42, 83	WD		DOSK	Magnetic WD suffers MHD instabilities, flares
	Mullan	1976	ApJ, 208, 199	WD		DON	Thermal radiation from flare near magnetic WD
	Woosley et al.	1976	Nature, 263, 108	5.5		DISK	Carbon detonation from accreted matter onto NS
	Lamb et al.	1977	ApJ, 217, 197	5.5		DISK	Mag grating of accret disk around NS causes sudden accretion
	First et al.	1977	ApJ, 214, 268	804		DOSK	Instability in accretion onto rapidly rotating BIR
	Dangupta	1979	Ap & 88, 63, 517	DG		806	Charged intergal rel dust grain enters sol sys, breaks up
	Taygan	1980	A&A, 87, 224	WD		DON	WD surface nuclear burst causes thromospheric flares
	Toygan	1980	A&A, 87, 224	NS		DOSK	NS surface nuclear burst causes chromospheric flares
	Ramaty et al.	1991	Ap & 85, 75, 193	N3		DOK	NS vibrations heat atm to pair produce, analhilate, synch cool
	Newman et al.	1980	ApJ, 242, 319	5.8	AST	DUSK	Astoroid from interstellar medium hits NS
	Romaty et al.	1980	Nature, 287, 122	25.2		HALO	NS core quake caused by phase transition, vibrations
	Roward et al.	1981	ApJ, 249, 302	5.5	AST	DISK	Astoroid hits NS, B field confines mass, creates high temp
	Mitrofanov et al.	1981	Ap & 88, 77, 469	1.8		DORK	Helzum flash cooled by MHD waves in NS outer layers
	Colgate et al.	1991	ApJ, 248, 771	5.5	AST	DESK	Asteroid hits NS, tidally disrupts, heated, expelled along B line
	was Blures	1.000	Ap.J, 248, 297	19.05	AST	DOM: N	Asterood eaters NS ill field, dragged to surface collision
	Restored	1992	Coshes, 20, 72	MAG.		SADE-	Magnetic reconnection at heliopause
	R. M.A.	100.2	ApJ, 260, 371	10.0		DOM: N	An interestion pure practical constraint in All magnetospheres
	Thought of al.	1992	ApJ, 208, 716	19.0		DOM: N	Magnetic reconnection after NS surface He Bash
	Nyame of al.	1.000	April 200, 798	2.0		DOM: N	the random buleroot M firsh informer. Ma firsh on NR - of the
	Manufactory et al.	100.2	A&A, 111, 242	10.0		DOG N	e- capetere traggers it mash traggers He hash on AS surface
	Designment of all	1000	Notices 107, 465	10.0		DOLLAR.	to measure eyest the in rat attemp giving ret e-s, the C stat.
	Females et al.	1 Second	Aug. 1, 207, 060	10.0	1000	DOM: N	the Arrays for Comp some by mother overlying plasma
	Read	1000	April 201, 50, 409	100	12.20	IL ALCO	Non-matter accum at NS magnetopause then subbinly acceles.
	Montown et al.	1.000	Nation 201 and	10.0		ELCON.	NX acception from how more binany companies.
	Rispondel et al.	1000	Au & 10, 80, 401	100		DOWN	Newtron rich elements to XI and an arth cucky comparison
	Bississingly of al.	1004	Rep & 100, 80, 487	200		DOWN	Thermonyclest emission hereath X8 conferes
	Ellipson of all	1000	A&A, 128, 102	2.5		HALC	NS consuming a supreme beating which SUR apportune
	Remover of all	1.040	A&A, 128, 100	2.5		DOWN	B field contains matter on NE can allowing fusion
	the second second			-			the same statement warmen on the task warming random

Nemiroff, 1994, Comments on Astrophysics, 17, 189

128 models

Multiple progenitor systems?

Known observationally-defined transients have multiple progenitors (SNe & GRBs)

Following discussion not limited to repeating models

Plan

- Model-independent (parameter-dependent) predictions
 - Afterglow
 - Prompt emission in other wavelengths
- Model-specific predictions
 - Models without bright counterparts
 - Models with bright counterparts: SGR giant flare, GRB, SN, AGN, GW?
- Data
 - FRB 150418
 - FRB 131104
 - The repeater FRB 121102
- Latest ideas
 - Young magnetar?
 - Cosmic combs?

Model-independent (parameter-dependent) Predictions

Afterglow

- Any "explosion" would leave behind an afterglow through interaction between the ejecta and ambient medium
- Relativistic ejecta have brighter afterglows. Both FRBs and GRBs are relativistic
- However, isotropic emission energy differs by 12-13 orders of magnitudes!

GRB afterglow

 $F_{\nu,max} = (7.7 \text{ mJy}) (p + 0.12)(1 + z)^{3/2} \epsilon_{B,-2}^{1/2} E_{52} A_* D_{L,28}^{-2} t_d^{-1/2}$

 $\nu_m = (4.0 \times 10^{14} \text{ Hz}) (p - 0.69)(1 + z)^{1/2} \epsilon_{B,-2}^{1/2} [\epsilon_e g(p)]^2 E_{52}^{1/2} t_d^{-3/2}$

Detectable only if FRBs have very low efficiency in radio, so that a much larger energy kinetic energy is released to drive a bright afterglow

FRB Afterglows

(Yi, Gao & Zhang 2014, ApJL, 792, L21)

FRB Afterglows

- Very faint!
- Observational strategy:
 - Rapid follow-up may not help much.
 - Wide field telescopes (Xrays and optical) may help
 - Best shot: deep follow-up observations in radio.
 However, much fainter than the steady nebula observed from the repeater.

Prompt emission in optical?

(guess rather than prediction)

- No reliable prediction on optical emission (radio emission is coherent)
- Keep searching
- There might be a lot of fast optical bursts may or may not related to FRBs.

GRB prompt optical emission

Model-specific Predictions

Models likely without a bright counterpart

- Pulsar nano-shots
- Pulsar magnetospheric instabilities
- Blitzars with a long delay (e.g. thousands of years after formation of supramassive NS)

Models likely with a counterpart

- FRB SGR giant flare connection?
- FRB GRB connection?
- FRB SN connection?
- FRB GW connection?

FRB - Magnetar giant flare connection?

Popov et al.; Kulkarni et al. Katz; ...

- Short-hard spike detectable as short GRBs out to ~ 70 Mpc (non-detectable at z=0.193 unless flares are more energetic)
- No dispersed radio emission for SGR 1806-20

Tendulkar et al. (2016)

FRB - GRB connection?

Zhang (2014); Murase et al. (2016); Dai et al. (2016)

- Blitzar in GRB
 - Supra-massive NSs as GRB engine
 - Collapse 100-10000 s after the burst
 - ~ 30% short GRBs have magnetar collapsing signature ~ 300 s after the bursts
- NS NS mergers
 - Pre-merger unipolar induction (Piro 2012; Wang et al. 2016)
 - Charged compact star mergers (Zhang 2016)

Early search

Bannister, Murphy, Gaensler & Reynolds, 2012, ApJ, 757, 38

Search for an FRB in a right GRB at a right time

- Non detections in several more GRBs
- Non-detection is norm. To detect an FRB following a GRB, one needs to have
 - Right GRB (not a BH nor a stable magnetar)
 - At the right time (not before or after collapse)
 - With a bright enough flux (~Jy at z~0.5-1?)
- Rapid slew, continuous monitoring highly desired
- Especially 300 s after short GRBs!

Palaniswamy et al., 2014, ApJ, 790, 63

FRB - GRB rates

FRB - SN connection?

Kashiyama et al. (2013)

- WD WD merger making a Type Ia SN ruled out in large parameter space
- Importance of real-time follow-up

FRB - GW connection?

Totani; Zhang; Piro; Wang et al.; Liebling et al.; Liu et al.

- Post-merger synchronization of the magnetosphere (NS-NS mergers only)
- Unipolar induction (NS-NS and possibly NS-BH mergers
- Pre-merger magnetospheric activities of mergers with at least one charged member (NS-NS, NS-BH, BH-BH mergers)

Charged BH merger model

(Zhang, ApJ, 827, L31)

 $\nabla \cdot E = 4\pi\rho$ $\nabla \cdot B = 0$ $\nabla \times E = -\frac{1}{c}\frac{\partial B}{\partial t}$ $\nabla \times B = \frac{4\pi}{c}J + \frac{1}{c}\frac{\partial E}{\partial t}$

Maxwell Equations

High school AP Physics E&M

Charged BH merger model

(Zhang, ApJ, 827, L31)

GRB

FRB

Can produce Fast radio bursts (FRBs) and short GRBs

$$\hat{q} \sim (10^{-9} \text{--} 10^{-8}) \qquad \qquad \hat{q} \sim (10^{-5} \text{--} 10^{-4})$$

See also GR simulations by Liebling & Palenzuela (2016)

Merger & FRB rate

• BH-BH merger event rate density (Abbott et al. 2016)

$$(9-240) \text{ Gpc}^{-3} \text{ yr}^{-1}$$

• FRB event rate density

$$\dot{\rho}_{\rm FRB} = \frac{365 \dot{N}_{\rm FRB}}{(4\pi/3) D_z^3} \simeq (5.7 \times 10^3 \text{ Gpc}^{-3} \text{ yr}^{-1}) \\ \times \left(\frac{D_z}{3.4 \text{ Gpc}}\right)^{-3} \left(\frac{\dot{N}_{\rm FRB}}{2500}\right),$$

 Adding NS-NS, NS-BH mergers, may account for a good fraction of FRBs

What do data tell us?

Any counterpart discovered?

FRB 150418

(Keane et al. 2016, Nature)

Flaring AGN - connection to FRB?

- Re-brightened to the original level (Williams & Berger 2016; Vedanthem et al. 2016; Johnston et al. 2016)
- AGN flare or scintillation?
- An unrelated background source or is there a connection between the AGN and the FRB?
- Low probability of having the bright flare coincides with FRB both in space and in time (Li & Zhang 2016)

FRB 131104 - Swift J06

(DeLaunay et al. 2016, ApJL; Murase et al.

A faint GRB association? 4.2σ

FRB 131104 - Swift J0644.5-5111 No radio afterglow

(Shannon & Ravi; Murase et al.; Gao & Zhang; Dai et al.)

-0.5

-1.5

-2.5

-3

-3.5

ε_=0.1

0.2

0.1

Gao & Zhang 2017

Shannon & Ravi 2016

Does it make sense?

- Not exactly.
- Model predictions:
 - Either FRB after the GRB (blitzar scenario)
 - or FRB before the GRB (merger scenario)
- Data:
 - GRB started at least 7 s
 before the FRB

The repeater FRB 121102

Chatterjee et al.; Marcote et al.; Tendulkar et al.

- Located in a star forming galaxy
- Associated with a steady radio source
- What is the relationship between the radio source and FRBs?

Latest ideas

Magnetar-powered FRBs in a nebula

Yang et al. (2016); Murase et al. (2016); Metzger et al. (2017)

- A magnetar powers both the nebula and FRBs?
- Preceded by a long GRB or super-luminous SN? - A connection with GRB and SN?
- Synchrotron heating of the nebula by FRBs?
- Issue: No evolution of DM for the repeater

Yang et al. 2016, ApJL, 819, L12

Cosmic combs

Zhang (2017, ApJL, arXiv:1701.04094)

- Condition: ram pressure > magnetic pressure
- Source of comb: AGN, GRB, SN, TDE, companion ...
- A unified model
 - FRB 150418: combed by an AGN
 - FRB 131104: combed by a GRB
 - Repeater: "marginally" combed by an unsteady nebula wind

Cosmic combs

Zhang (2017, ApJL, arXiv:1701.04094)

- Advantages:
 - Additional energy source other than spindown and magnetic energy: kinetic energy of the stream
 - Can repeat or not
 - Insignificant DM evolution
- Predictions
 - FRB 150418: may (or may not) repeat during another AGN flare
 - Association of FRBs with AGNs, GRBs, SNe, TDEs ... anything produces a stream
 - Or no association at all (a companion comb)
 small △DM

Conclusions

- FRB counterparts would reveal their progenitor(s)
- Model-independent and model-specific predictions (none realized)
- Some counterparts (or counterpart candidates) detected. Observations are perplexing and inconsistent
- Continue multi-wavelength, multi-messenger observations!
- Don't over-estimate the creativity of Nature, but don't under-estimate it, either!